Skip to main content

Nanotubes boost potential of salinity power as a renewable energy source


In November 2009, Norwegian state owned electricity company Statkraft opened the world’s first osmotic power plant prototype, which generates electricity from the difference in the salt concentration between river water and sea water. While osmotic power is a clean, renewable energy source, its commercial use has been limited due to the low generating capacities offered by current technology – the Statkraft plant, for example, has a capacity of about 4 kW. Now researchers have discovered a new way to harness osmotic power that they claim would enable a 1 m2 (10.7 sq. ft.) membrane to have the same 4 kW capacity as the entire Statkraft plant.
The global osmotic, or salinity gradient, power capacity, which is concentrated at the mouths of rivers, is estimated by Statkraft to be in the region of 1,600 to 1,700 TWh annually. Electricity can be generated through the osmotic phenomena that results when a reservoir of fresh water is brought into contact with a reservoir of salt water through the use of a special kind of semipermeable membrane in one of two ways –either by harnessing the osmotic pressure differential between the two reservoirs to drive a turbine, or by using a membrane that only allows the passage of ions to produce an electric current.
The Statkraft prototype plant (and a planned 2 MW pilot facility) relies on the first method, using a polymide membrane that is able to produce 1 W/m2 of membrane. A team led by physicists at the Institut Lumière Matière in Lyon (CNRS / Université Claude Bernard Lyon 1), in collaboration with the Institut Néel (CNRS), have developed an experimental device that they say is 1,000 times more efficient than any previous system, significantly enhancing the commercial viability of osmotic power as a power source.
The team’s experimental device uses the second method. It consists of an impermeable and electrically insulating membrane that was pierced by a single hole through which the researchers inserted a boron nitride nanotube with an external diameter of a few dozen nanometers. With this membrane separating a salt water reservoir and a fresh water reservoir, the team measured the electric current passing through the membrane using two electrodes immersed in the fluid either side of the nanotube.
The results showed the device was able to generate an electric current through the nanotube in the order of a nanoampere. The researchers claim this is 1,000 times the yield of the other known techniques for harvesting osmotic energy and makes boron nitride nanotubes an extremely efficient solution for harvesting the energy of salinity gradients and converting it immediately into usable electrical power.
Extrapolating their results to a larger scale, they claim a 1 m2 boron nanotube membrane should have a capacity of around 4 kW and be capable of generating up to 30 MWh per year, which is three orders of magnitude greater than that of current prototype osmotic power plants.
The researchers’ next step will be to study the production of membranes made of boron nitride nanotubes and test the performance of nanotubes made from other materials.

Comments

Popular posts from this blog

Connectify Dispatch combines multiple internet connections into high speed bandwidth

Connectify, a company known for software that can turn your computer into a wireless hotspot, is at work on a new project called Dispatch that will turn all internet connections available to your device into one glorious (and hopefully faster and more stable) stream of high-speed bandwidth. The project appears to take some of its cues from live video broadcasting companies like  LiveU , which sells custom made backpacks wired up with 3G/4G and Wi-Fi transceivers. These backpacks then spread the traffic load over whatever available networks it can connect to in order to maximize bandwidth, which is obviously a major plus if you're streaming live video. Dispatch, however, is planned as a software-only solution for the masses – no special backpack required. It will dynamically manage the traffic based on which networks provide the greatest bandwidth and have the clearest signal, which also means that even if one of the networks drops out entirely, you'll still have interne...

New type of silicone exhibits both viscous and elastic properties

Looking for a more effective solution to the all-too-common wobbly table dilemma than a folded up bit of cardboard or piece of rubber under the leg, University of Virginia physicist Lou Bloomfield created a new type of silicone rubber called Vistik – it's malleable enough to take on any shape when pressed, but is still resilient enough to offer support, as it  gradually starts to return to its original shape as the pressure is released. The material could have many applications ... beyond just steadying up wobbly tables. Vistik is a viscoelastic material, meaning that it exhibits both viscous and elastic properties. As a result, when compared to something such as conventional silicone rubber, there’s a considerable time lag in its response to continuous pressure. “It seems elastic in response to sudden forces or impacts, denting in proportion to the sudden, brief stress and then returning almost instantly to its earlier shape when that stress is removed,” Prof. Bloomfield ex...

Tricycle House pedal-powered RV offers lots of home comforts

The idea of living life on the road in an RV can be appealing. Unfortunately, most RV’s aren’t very environmentally friendly, nor are they self-sufficient. However, the Tricycle House isn’t like most RV’s, as it relies on pedal power to move between destinations, and boasts several pieces of clever folding furniture to provide those much-needed home comforts. Conceived by architectural firm People’s Industrial Design Office (PIDO) for 2012’s “Get It Louder” Exhibition in Beijing, the Tricycle House addresses the fact that private ownership of land is not permitted in China. The pedal-powered RV envisions a future in which individual Chinese people are able to more fully connect with their land, while living simply and sustainably, on their own terms. The Tardis-like house structure is affixed to a tricycle and constructed from polypropylene (a thermoplastic polymer). The polypropylene is cut with a CNC router, before being folded and welded into shape, retaining its strength but ga...