Skip to main content

Stainless magnesium breakthrough bodes well for manufacturing industries

Magnesium alloys are very attractive for a range of weight-sensitive applications. They have the largest strength-to-weight ratio of the common structural metals, are lighter than aluminum and are particularly favored for being easy to machine and for their ability to be die cast to net shape. Unfortunately, magnesium alloys tend to corrode too easily. A team at Monash University in Australia has now discovered a novel and potentially game-changing approach to the problem: poisoning the chemical reactions leading to corrosion of magnesium alloys by adding a dash of arsenic to the recipe.
Magnesium alloys are of great interest as lightweight replacements for aluminum, titanium, and steel components in a range of transportation and aerospace applications. However, such alloys corrode easily, and this often prevents their use as replacements for noncorroding metals, particularly in applications requiring high reliability over a range of environments. As a result, the use of magnesium alloys at present is less than a million tons per year, while nearly 50 million tons of aluminum alloys are used each year.
Research and development carried out over the past decade have solved certain problems presented by magnesium alloys. Their tendency toward high-temperature creep was tamed by inclusion of scandium and gadolinium, and their flammability has been greatly reduced by introducing a small amount of calcium into the mix.
Corrosion resistance in magnesium alloys has not improved to the same degree. The main discovery is that the presence of iron, nickel, copper, and cobalt in a magnesium alloy strongly activates corrosion. This is due to their low solid solubility limits (meaning that above a very small percentage they precipitate out as intermetallic compounds within the alloy structure) and the fact that they have the right electrochemistry to behave as active cathodic sites that reduce water while causing the loss of magnesium from the alloy.
If a magnesium alloy has small enough quantities of these metals, it will have improved corrosion resistance. Also, the presence of iron can be overcome by the presence of a larger amount of manganese. Maintaining such precise control over the composition of structural magnesium alloys, unfortunately, forces the price skyward, and doesn't really solve the corrosion problem.
Corrosion chemistry with and without arsenic as cathodic poison (Image: Monash University)
Led by Associate Professor Nick Birbilis, the Monash team attempted to apply an additive known as a cathodic poison to a standard magnesium structural alloy. Cathodic poisons act by capturing atomic hydrogen within the structure of a metal. This prevents the formation of free hydrogen gas which is required to balance the corrosive chemical processes. A number of alloying elements, including arsenic, antimony, sulfur, selenium, and tellurium, are known to act in this manner in other alloy systems.
The result was that addition of about one-third of a percent of arsenic to the magnesium alloy reduced its corrosion rate in a salt solution by a factor of nearly ten. In this initial study the intent was to prove the principle of the use of cathodic poisoning. Prof. Birbilis' lab is currently working with corporate sponsors on developing a series of commercially practical stainless magnesium alloys.
"This is a very important and timely finding," says Prof. Birbilis. "In an era of light-weighting for energy and emissions reductions, there is a great demand for magnesium alloys in everything from portable electronics to air and land transportation. Magnesium products are rapidly evolving to meet the demands of industry, but presently are hindered by high corrosion rates. The arsenic effect we discovered is now being trialed as a functional additive to existing commercial alloys. Our breakthrough will help develop the next generation of magnesium products, which must be more stainless.”

Comments

Popular posts from this blog

Google to build green-roof California HQ

An image has been released of what looks set to become Google's new California HQ. Named Bay View, the nine-building campus is designed to maximize the likelihood of innovation-friendly chance encounters between the workforce. "You can't schedule innovation," Google's David Radcliffe tells  Vanity Fair . "We want to create opportunities for people to have ideas and be able to turn to others right there and say, 'What do you think of this?'" This philosophy has fostered the design's angular office blocks, arranged back to back like nodding clergy. Despite the 1.1 million sq ft (102,000 sq m), employees will be a maximum of a 2.5-minute walk away from one another, Vanity Fair  reports. Perhaps most remarkable is that this is Google's first build. In its 15-year history, Google has only ever occupied buildings previously used by others. "We've been the world's best hermit crabs: we've found other people's shell

Connectify Dispatch combines multiple internet connections into high speed bandwidth

Connectify, a company known for software that can turn your computer into a wireless hotspot, is at work on a new project called Dispatch that will turn all internet connections available to your device into one glorious (and hopefully faster and more stable) stream of high-speed bandwidth. The project appears to take some of its cues from live video broadcasting companies like  LiveU , which sells custom made backpacks wired up with 3G/4G and Wi-Fi transceivers. These backpacks then spread the traffic load over whatever available networks it can connect to in order to maximize bandwidth, which is obviously a major plus if you're streaming live video. Dispatch, however, is planned as a software-only solution for the masses – no special backpack required. It will dynamically manage the traffic based on which networks provide the greatest bandwidth and have the clearest signal, which also means that even if one of the networks drops out entirely, you'll still have interne

Holovision aims at life-size 3D projections

Close on the heels of the 21st century complaint of “Where’s my jetpack?” is “Where’s my holographic projector?”. Nothing spells “future” like having a conversation with someone whose life-size image is beamed into the room. Provision  of Chatsworth, California wants to bring that one step closer to reality, with its Holovision life-size holographic projector. The company is currently running a Kickstarter campaign aimed at raising US$950,000 to fund the development of new technology for the projector, with hopes of unveiling it next year. The Holovision projector uses what is called aerial or volumetric imaging, which is a way of producing 3D images without special glasses, lenses or slits. It uses a digital LCD screen and a concave mirror to produce the illusion of a 3D image floating outside the projector. In the smaller versions currently made by Provision, this is about 30 cm (12 in) from the display surface, but in the life-size Holovision, this will be further. According