Skip to main content

Students crash rockets to develop new asteroid sample collection technique

In what at first glance seems like a terrible sense of direction, in March students from the University of Washington fired rockets from kites and balloons at an altitude of 3,000 ft (914 m) straight into the ground at Black Rock, Nevada: a dry lake bed in the desert 100 mi (160 km) north of Reno. This may seem like the ultimate in larking about, but it's actually a serious effort to develop new ways of collecting samples from asteroids.The test was part of the “Sample Return Systems for Extreme Environments” project. The idea is to find cheaper, more efficient ways of collecting samples from asteroids and hazardous areas on Earth, such as volcanoes and nuclear disaster zones, by using penetrators instead of soft landers or ground crews to hammer out sample cores.
According to the team, this would result in lower cost than soft landing techniques by reducing the velocity and vehicle mass needed to gather the sample, minimizing damage on impact, as well as being mechanically simpler. In the Nevada test, the penetrators were fired at the ground using rocket boosters to provide as much speed as possible at impact.
“We’re trying to figure out what the maximum speed is that a rocket can survive a hard impact,” says Robert Winglee, a UW professor of Earth and space sciences.
CAD rendering of a sample return spacecraft (Image: NASA)
The penetrator used in the test is 6 ft (1.8 m) long and 6 in (15.2 cm) in diameter. A carbon fiber airframe makes up the main body of the penetrator, which has a hardened solid tip with three sample ports. The tip must be harder than the material it penetrates, so it consists of aluminum or steel, depending on the target.
Behind the tip and lining the airframe is a crumple zone filled with Hexcel: a honeycomb aluminum material that collapses in an orderly fashion to absorb the force of impact. This protects the central collecting tube, which is attached to a tether developed in collaboration with Robert Hoyt of Tethers Unlimited Inc. of Bothell, Washington. The purpose of the tether is to control the impact speed of the penetrator and allow for sample return while helping to minimize the onboard electronics needed.
The way the penetrator works is that it is either dropped from space or, if used on Earth, fired into the ground using a rocket called a "sustainer" from a balloon or kite. When the penetrator hits, it's at 100 m/s (330 ft/s) and a force of 1,000 g’s on Earth and 1 km/s (0.6 mi/s) and 10,000 g’s if aimed at an asteroid.
Schematic of penetrator test vehicle
On impact, the penetrator burrows several feet into the surface and the force of impact rams sample material through the ports on either side of the nose, which funnels it to the interior sample return capsule that is attached by tether to a balloon or a spacecraft. The tether attached to the capsule is then used to reel in the capsule to the balloon or mothership to recover the sample.
The ultimate goal of the project is an unmanned sample collector spacecraft for studying asteroids or small moons. Using a solar-electric ion propulsion system, it would cruise to its target to conduct either a flyby or orbital survey. Once on station, the craft would fire a penetrator, which would burrow into the surface, then a tether would immediately haul the sample container back into the craft for return to Earth. The spacecraft would carry multiple penetrators for multiple sample collection.
According to Winglee, this year's test were successful, but the impact wasn't fast enough for a proper test, but it still won US$500,000 over two years from NASA Innovative Advanced Concepts. A second phase of testing in California is scheduled for next Northern Hemisphere summer and the year after with the goal of hitting the ground at Mach 2 (1,500 mph, 2,400 km/h).

Comments

Popular posts from this blog

Google to build green-roof California HQ

An image has been released of what looks set to become Google's new California HQ. Named Bay View, the nine-building campus is designed to maximize the likelihood of innovation-friendly chance encounters between the workforce. "You can't schedule innovation," Google's David Radcliffe tells  Vanity Fair . "We want to create opportunities for people to have ideas and be able to turn to others right there and say, 'What do you think of this?'" This philosophy has fostered the design's angular office blocks, arranged back to back like nodding clergy. Despite the 1.1 million sq ft (102,000 sq m), employees will be a maximum of a 2.5-minute walk away from one another, Vanity Fair  reports. Perhaps most remarkable is that this is Google's first build. In its 15-year history, Google has only ever occupied buildings previously used by others. "We've been the world's best hermit crabs: we've found other people's shell...

Nerf Vulcan Sentry Gun tracks targets and avoids friendly fire

Anyone who plays video games will know that few things protect an area like a well-placed sentry gun. In the real world, though, even a person's bedroom or office could use a little protection sometimes, which is why one designer has built the Nerf Vulcan Sentry Gun. Using a custom program and some servos, the sentry can automatically locate targets and unleash a stream of foam darts at over seven times the usual speed, while keeping its owner out of the crosshairs. Britt Liv Ulrike Michelsen, a chemical and biological engineering student from Germany, designed and constructed the sentry using mostly basic electronics and some plywood. This isn't the first time she's modified a Nerf gun, but building this robotic turret is arguably her most ambitious project to date. Luckily, the Nerf Vulcan already operates using an electric motor, so controlling the actual firing mechanism through a computer was just a matter of connecting it directly to an Arduino Uno and a laptop. ...

Wired wood: Gizmag's top ten wooden gadgets

We may be surrounded by gadgetry clad in shiny aluminum and gaudy plastic, but there's still a place left in the digital age for the comfort, simplicity and beauty of wood. Perhaps its the trend towards a "green" aesthetic or some deeper drive to get back to nature, but we've noticed a growing number of consumer electronics offerings in recent times that mesh circuit boards and synthetics with the wonders of wood. With this in mind, we've scoured our resources to come up with this list of Gizmag's top ten wooden gadgets. OOOMS Wooden USB Stick OOOMS, a design company based in The Netherlands, has created a  USB stick  that is made of … a stick. The creators literally pick up sticks, based on quality and appearance, and professionally work them into unique USB sticks that can hold from 2 to 16 Gb. Wooden Records Amanda Ghassaei has developed a laser cutting system that can  carve music into a wooden record . After pulling audio from a WAV file with P...